Please check that this question paper contains 09 questions and 02 printed pages within first ten minutes.

[Total No. of Questions: 09] [Total No. of Pages:]
Uni. Roll No.

Program: B.Tech. (Batch 2018 onward)

MORNING

Semester: 3rd

Name of Subject: Digital Electronics

1:0 MAY 2023

Subject Code: ESCS-101

Paper ID: 16012

Scientific calculator is not allowed.

Time Allowed: 03 Hours

Max. Marks: 60

NOTE:

1) Parts A and B are compulsory

- 2) Part-C has Two Questions Q8 and Q9. Both are compulsory, but with internal choice
- 3) Any missing data may be assumed appropriately

Part – A [Marks: 02 each]

- Q1. (a) Solve $(85.63)_{10}$ into $(X)_2$
 - (b) Interpret the concept of Duality principle with an example.
 - (c) What is Race around condition? How it can be avoided?
 - (d) Find the value of x in $(327)_x = (215)_{10}$
 - (e) Differentiate between level and edge triggering.
 - (f) List the various advantages of ring counter?

Part – B [Marks: 04 each]

- Q2. Explain the working and truth table of J-K flip flop in detail.
- Q3. Compare and contrast Synchronous counter and Asynchronous counter?
- Q4. Translate C'D+ABC'+A'B'D+ABD' into standard POS form.
- Q5. Design a Combinational circuit which has four inputs and one output. The Output is equal to 1 when following conditions meet:
 - (a) All the inputs equal to 1
 - (b) None of the inputs equal to 1
 - (c) An odd number of inputs equal to 1.

Page 1 of 2

P.T.O.

Minimize the given expression using K-Maps. $f = \sum m$ (0, 4, 7, 8, 9, 10, 11, 16, 24, 25, 26, Q6. 27, 29, 31).

MORNING

Explain block diagram of encoder to explain its functions. Q7.

1 1 MAY 2023

Part - C

[Marks: 12 each]

Construct a 4-bit Binary to Gray Code Converter with proper truth table, K-Maps and Q8. Circuit Diagram Implementation.

OR

Illustrate the advantages and disadvantages of RTL, DTL, and TTL logic families.

Design a 4-bit synchronous counter using J-K flip flops to count the following sequence Q9. 0, 3, 5, 9, 11, 14.

OR

Explain the following in detail:

- (a) Programmable Logic Array (PLA),
- (b) Programmable Array Logic (PAL),
- (c) Field Programmable Gate Arrays (FPGA).